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Being motivated by the recent experiments on instabilities of the two-layer flows
in the rotating annulus with super-rotating top, we perform a full stability analysis
for such system in the shallow-water approximation. We use the collocation method
which is benchmarked by comparison with analytically solvable one-layer shallow-
water equations linearized about a state of cyclogeostrophic equilibrium. We describe
different kinds of instabilities of the cyclogeostrophically balanced state of solid-
body rotation of each layer (baroclinic, Rossby–Kelvin (RK) and Kelvin–Helmholtz
(KH) instabilities), and give the corresponding growth rates and the structure of the
unstable modes. We obtain the full stability diagram in the space of parameters of
the problem and demonstrate the existence of crossover regions where baroclinic and
RK, and RK and KH instabilities, respectively, compete having similar growth rates.

1. Introduction
For the study of frontal instabilities, there is a long tradition in geophysical fluid

dynamics (GFD) to consider experiments on fronts in differentially rotating annuli
(Hide 1958; Fultz et al. 1959; Hide & Fowlis 1965; Hart 1972). Recently the interest to
such experiments was revived in the context of the so-called spontaneous emission of
inertia-gravity waves by balanced flows (see Ford 1994; O’Sullivan & Dunkerton 1995
and the references in the special collection of Journal of the Atmospheric Sciences on
this subject, Dunkerton, Lelong & Snyder 2008). Thus, short-wave patterns coupled
to the baroclinic Rossby waves were observed in independent experiments (Lovegrove,
Read & Richards 2000; Williams, Haine & Read 2005; Flor 2008) on instabilities of
the two-layer rotating flows in the annulus at high enough Rossby numbers. Motivated
by these experiments we undertake in what follows a thorough stability analysis of a
two-layer shallow-water system in the rotating annulus. Classical baroclinic instability
is of course recovered, but special attention is paid to unbalanced instabilities, and
in particular to the RK one which we have also studied recently in the plane-parallel
channel (Gula, Plougonven & Zeitlin 2009) in the linear and nonlinear regimes. The
experiments mentioned above are not strictly speaking shallow-water ones, although
no pronounced vertical structure was observed, as to our knowledge. The results we
present below may serve, nevertheless, to understand the vertically averaged behaviour
of the full system. Moreover, Williams et al. (2005) interpreted their experiments in
terms of shallow-water dynamics, referring to Ford (1994). Being standard in GFD,
the two-layer shallow-water approximation is a reasonable compromise between the
realistic representation of the observed fluid flow and the computational effort (and
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amount of resources) necessary for a full stability analysis. It is, in addition, self-
consistent and universal. On the contrary, the fine vertical structure of the flow may
vary from one experiment to another, as will be explained below.

The paper is organized as follows. We first benchmark the numerical method in
§ 2 by comparing the analytic analysis for the one-layer shallow-water model in the
rotating annulus with the numerical one (it should be emphasized that the linearized
system is completely solvable ‘by hand’ in this case for the parabolic profile of the free
surface). This section also serves to identify the normal modes of the system. Then
in § 3 we present the results of numerical stability analysis for the two-layer shallow
water in the annulus. The instabilities in the two-layer case, as usual, result from the
resonances between the lower layer and the upper layer normal modes (e.g. Cairns
1979; Sakai 1989). We quantify different kinds of instabilities and demonstrate the
existence of crossover regions where the RK and baroclinic instabilities, and Kelvin–
Helmholtz (KH) and RK instabilities, respectively, coexist having close growth rates.

2. One-layer shallow water in the rotating annulus
We consider the one-layer rotating shallow-water model on the f -plane in polar

coordinates and study the flow in the cylindrical channel with boundaries situated at
r1 and r2 > r1. The system of equations is then written, in the rotating frame with the
rotation rate f = 2Ω:

Du −
(

f +
v

r

)
v − rΩ2 = −g∂rh,

Dv +

(
f +

v

r

)
u = −g

∂θh

r
,

Dh + h∇ · v = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

Here h is the depth of the layer, v = (u, v) are the radial and azimuthal velocity
components, D = ∂t + u∂r + v

r
∂θ is the Lagrangian derivative, f is the constant Coriolis

parameter and g is the gravity acceleration. The boundary conditions are free-slip:
u =0 at r = r1, r2.

We linearize these equations about the steady cyclogeostrophically balanced state
with the depth profile H (r), and corresponding velocity profile V (r):

f V +
V 2

r
+ rΩ2 = g∂rH. (2.2)

As usual, the centrifugal acceleration rΩ2 may be hidden by redefinition of H . The
linearized equations, with the same notation for the perturbations as for the full fields
in (2.1), are

∂tu +
V

r
∂θu − f v − 2

V v

r
= −g∂rh,

∂tv + u∂rV +
V

r
∂θv + f u +

V u

r
= −g

∂θh

r
,

∂th +
1

r
(rHu)r +

1

r
H∂θv +

V

r
∂θh = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)

By introducing the time scale f −1 = (2Ω)−1, the horizontal scale r0 = r2 − r1, the
vertical scale H0 = H (r1) and the velocity scale V0 = r0Ω , we use non-dimensional
variables from now on without changing notation. We thus obtain the following
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non-dimensional equations:

∂tu +
V

r
∂θu − v − 2

V v

r
= −Bu ∂rh,

∂tv + u∂rV +
V

r
∂θv + u +

V u

r
= −Bu

∂θh

r
,

∂th +
1

r
(rHu)r +

1

r
H∂θv +

V

r
∂θh = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.4)

where Bu = (Rd/r0)
2 is the Burger number and Rd = (gH0)

1/2/(2Ω) is the Rossby
deformation radius.

The normal modes are introduced in the standard way:

(u(r, θ), v(r, θ), h(r, θ)) = (ũ(r), ṽ(r), h̃(r)) exp [ik(θ − ct)] + c.c., (2.5)

where k is the azimuthal wavenumber (k ∈ �) and c is the azimuthal phase velocity.
Omitting tildes we thus get the following problem for eigenvalues c and eigenfunctions
u, v, h:

k

(
V

r
− c

)
u −

(
1 + 2

V

r

)
v = −Bu hr,

−
(

1 +
V

r
+ Vr

)
u + k

(
V

r
− c

)
v = −kBu

h

r
,

− (rHu)r
r

+ k
H

r
v + k

(
V

r
− c

)
h = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where here and below we denote the r-derivative by the corresponding subscript, if it
does not lead to confusion. It is known that for parabolic profile of H the eigenvalue
problem (2.6) may be solved analytically (see Killworth 1983, where this problem was
considered for the parabolic lens). Indeed by eliminating u and v

u =
Bu hrk

(
V
r

− c
)

+ Bu
r

kh
(
1 + 2V

r

)
(
1 + 2V

r

) (
1 + V

r
+ Vr

)
− k2

(
V
r

− c
)2

,

v =
k

(
V
r

− c
)

Bu
r

kh +
(
1 + V

r
+ Vr

)
Bu hr(

1 + 2V
r

) (
1 + V

r
+ Vr

)
− k2

(
V
r

− c
)2

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)

where we suppose that (1 + 2(V/r))(1 + (V /r) + Vr ) − k2((V/r) − c)2 �= 0, we obtain
the following ordinary differential equation for h:(

rH

(
V

r
− c

)
hr

)
r

−
(

Vr − V

r

)
Hhr + F (r) h = 0, (2.8)

with

F (r) =

[
H

(
1 + 2

V

r

)]
r

− k2 H

r

(
V

r
− c

)
− r

Bu

(
V

r
− c

)

×
((

1 + 2
V

r

)(
1 +

V

r
+ Vr

))
− k2

(
V

r
− c

)2

. (2.9)

Assuming a solid-body rotation of the fluid,

V (r) = αr, H (r) = βr2, β =
(1 + α)2

8Bu
, (2.10)
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consistently with the cyclogeostrophic balance (2.2), we get

(r3hr )r +

[
2
1 + 2α

α − c
− k2 − ((1 + 2α)2) − k2(α − c)2)

2βBu

]
rh = 0. (2.11)

V (r) is the velocity relative to the rotating frame, the basic solid-body rotation of
the fluid should then be given by α = 0, but we keep the parameter α for generality.

By defining for compactness

A =

[
2
1 + 2α

α − c
− k2 − ((1 + 2α)2) − k2(α − c)2)

2βBu

]
, (2.12)

we easily get the general solution of (2.11):

h(r) = C1r
α+ + C2r

α−,

α± = −1 ±
√

1 − A.

}
(2.13)

Solutions of the eigenproblem (2.6) must satisfy the boundary conditions u(r1) =
u(r2) = 0 which gives, using (2.7),

(α − c)hr +
(1 + 2α)h(r)

r

∣∣∣∣
r=r1,r2

= 0. (2.14)

With the help of (2.13), we get the following algebraic system for C1,2:

[α+(α − c) + (1 + 2α)]C1r
α+−1
1 + [α−(α − c) + (1 + 2α)]C2r

α−−1
1 = 0,

[α+(α − c) + (1 + 2α)]C1r
α+−1
2 + [α−(α − c) + (1 + 2α)]C2r

α−−1
2 = 0,

⎫⎬
⎭ (2.15)

and the solvability condition

[α+(α − c) + (1 + 2α)][α−(α − c) + (1 + 2α)]
[
r

α+−1
1 r

α−−1
2 − r

α−−1
1 r

α+−1
2

]
= 0. (2.16)

Two different solutions for A, cf. (2.13), thus arise:

A = 2
1 + 2α

α − c
−

(
1 + 2α

α − c

)2

, (2.17)

or

A = 1 +

(
nπ

log( r1
r2

)

)2

, n = 0, 1, 2, . . . . (2.18)

2.1. Kelvin modes

The first solution (2.17) combined with (2.12) gives a fourth-order equation for the
phase speed c:

(α − c)4 −
(

βBu +

(
1 + 2α

k

)2

(α − c)2 + βBu

(
1 + 2α

k

)2)
= 0, (2.19)

with the roots

c = α ±
√

βBu, (2.20)

c = α ± 1 + 2α

k
. (2.21)
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(a) (b)

Figure 1. Pressure and velocity fields for Kelvin modes propagating along the outer (a) and
the inner (b) wall with wavenumber k = 2. These modes correspond to (b) and (d ), respectively,
in figure 3.

The first pair of roots (2.20) are non-dispersive and correspond to the eigenfunction
u ≡ 0. They, thus, describe the two Kelvin modes concentrated at the inner and outer
walls respectively. We present the elevation profile

h(r) = C1r
3 or h(r) = C2r

−3, (2.22)

and the corresponding velocity field obtained from (2.7) and (2.10) for Kelvin modes,
with k = 2, in figure 1. The structure of the Kelvin waves with the wind parallel to the
boundaries and pressure extrema near the lateral boundaries is clearly seen, as well as
the geostrophic character of the waves. The second pair of roots (2.21) correspond to
the degenerate case (1+2(V/r))(1+ (V/r) +Vr ) − k2((V/r) − c)2 = 0 (see the previous
section). As is easy to see from (2.6), or directly from (2.14) they do not correspond
to any non-trivial eigenfunction and will be discarded in what follows.

2.2. Rossby and Poincaré modes

The second solution (2.18) combined with (2.12) gives a third-order equation for the
phase speed c for each value of n ∈ �:

k2

βBu
(α − c)3 −

[
k2 + 1 +

(
nπ

log( r1
r2

)

)
+

1 + 2α

βBu

]
(α − c) + 2(1 + 2α) = 0. (2.23)

For each n ∈ � a set of solutions consists of one Rossby mode and two Poincaré
(inertia-gravity) modes of order n.

The solutions are given, cf (2.13), by

h(r) = C1r
[inπ/log(r1/r2)−1] + C2r

−[inπ/log(r1/r2)−1] (2.24)

with the constraint
C1

C2

= − (α − c)α− + (1 + 2α)

(α − c)α− + (1 + 2α)

r
α−
1

r
α+

1

. (2.25)

It should be noted that the case n= 0 ⇒ A= 1 is degenerate: the corresponding field
may be obtained, as usual, by taking the limit and leads to the logarithmic in r

solution.
The structure of the corresponding modes for k =2 is represented in figure 2: the

Rossby wave in figure 2(a) and the gravity wave in figure 2(b). The characteristic
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(a) (b)

Figure 2. Pressure and velocity fields for n= 1 mode of the Rossby wave (a) and the Poincaré
wave (b) for wavenumber k = 2. These modes correspond to (c) and (a), respectively, in figure 3.
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Figure 3. Dispersion diagram c = c(k) for the solutions of (2.23) and (2.19) with α = 1/2. (a)
Poincaré modes (see figure 2b), (b) and (d ) Kelvin modes (see figure 1), (c) Rossby modes
(see a zoom of this part in figure 4). Note the spectral gap, i.e. the fact that fast Poincaré and
Kelvin modes are separated from slow Rossby modes. Although the spectrum of k is discrete,
for the sake of visualization we present continuous curves c(k); it is to be kept in mind that
only the values k ∈ � correspond to realizable solutions.

velocities and pressure fields of the Rossby wave are easily recognizable with wind
turning around pressure extrema according to the geostrophic balance.

In figure 3 we present the dispersion diagram for thus obtained eigensolutions of
the problem (2.6). It is instructive to compare this diagram with the corresponding
diagrams for one-layer shallow-water flow with linear shear (Couette flow) in the
rectilinear channel in the absence of rotation, as obtained in Knessl & Keller (1995)
and Balmforth (1999). In the latter case, Rossby and Kelvin modes are absent; there is
no spectral gap and the dispersion curves for left-moving and right-moving Poincaré
modes can intersect leading to instability, according to the standard rules (Cairns
1979; Sakai 1989). In our case such intersections are not possible due to the spectral
gap introduced by rotation, and the flow is stable.

We used the above-described analytic results in order to benchmark the numerical
method which we are using. The eigenvalue problem of order 3 corresponding to
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Figure 4. Zoom of the figure 3 on slow Rossby modes with varying n.
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r1 r20

Figure 5. Schematic representation of a two-layer flow in the annulus
with a super-rotating lid.

the system of equations (2.6) can be solved numerically by applying the spectral
collocation method as described in Trefethen (2000) and Poulin & Flierl (2003). A
complete basis of Chebyshev polynomials is used to obtain a discrete equivalent of the
system which is achieved by evaluating (2.6) on a discrete set of N collocation points
(typically a rather low resolution N = 50 to 100 is sufficient, see below) and using the
Chebyshev differentiation matrix to discretize the spatial derivatives. The eigenvalues
and eigenvectors of the resulting operator are computed with the help of Matlab
routine ‘eig’. The occurrence of spurious eigenvalues is common in such discretization
procedure. We therefore checked the persistence of the obtained eigenvalues by
recomputing the spectrum with increasing N . The comparison of numerical and
analytic results shows excellent agreement. We do not display it because of absence
of any differences. This means that the collocation method works remarkably well
even at rather low resolution.

3. Two-layer shallow water in the rotating annulus
A typical configuration used in laboratory experiments by Williams et al. (2005)

and Flor (2008) is presented in figure 5. The annulus has an inner vertical sidewall
of radius r1, an outer vertical sidewall of radius r2 and a total depth 2H0. The radial
width of the annulus is therefore r2 − r1, and the two layers have equal depths H0 at
rest. The base and the lid are both horizontal and flat. The angular velocity about the
axis of symmetry is Ω , and the upper lid is super-rotating at Ω+�Ω . This differential
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rotation provides a vertical velocity shear of the balanced basic state which is close to
solid body rotation of each fluid layer, with different angular velocities. In the stability
analysis which follows such state will be represented by a state of cyclogeostrophic
equilibrium in each layer with linear radial profile of the azimuthal velocity in the
rotating two-layer shallow-water model in the f -plane approximation.

In order to fulfil a complete linear stability analysis we use below the collocation
method, benchmarked in the one-layer case. We present the model, its linearized
version and introduce the key parameters in § 3.1. We then display the instabilities,
their growth rates and the structure of the unstable modes in § 3.2.

3.1. Overview of the model and the method

Consider the two-layer rotating shallow-water model on the f -plane. The momentum
and continuity equations are written in polar coordinates as follows:

Djuj −
(
f +

vj

r

)
vj − rΩ2 = ∂rΠj ,

Djvj +
(
f +

vj

r

)
ui =

∂θΠi

r
,

Djhj + hj ∇ · vj = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where vj = (uj , vj ), hj and Πj are the (radial, azimuthal) velocity, thickness and
pressure normalized by density (geopotential), in the j th layer (counted from the top)
and j = 1, 2. Here, f = 2Ω is the dimensional background rotation and Dj denote
Lagrangian derivatives in respective layers. The boundary conditions are u =0 at
r = r1, r2.

By introducing the time scale 1/f , the horizontal scale r0 = r2 − r1, the vertical
scale H0 and the velocity scale V0 = r0Ω , we use non-dimensional variables from
now on without changing notation. By linearizing about a steady state with constant
azimuthal velocities V1 �= V2, we obtain the following non-dimensional equations (the
ageostrophic version of the Phillips model in cylindrical geometry):

∂tuj +
Vj

r
∂θuj − vj − 2

Vjvj

r
= −Bu∂rπj ,

∂tvj + uj∂rVj +
Vj

r
∂θvj + uj +

Vjuj

r
= −Bu

∂θπj

r
,

∂thj +
1

r
(rHjuj )r +

1

r
Hj∂θvj +

Vj

r
∂θhj = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2)

where the pressure perturbations in the layers πj are related through the interface
perturbation η, as usual:

π2 − π1 + s(π2 + π1) = Bu η, (3.3)

and Bu = (Rd/r0)
2 is the Burger number, Ro = �Ω/(2Ω) is the Rossby number,

Rd = (g′H0)
1/2/(2Ω) is the Rossby deformation radius, g′ = 2�ρg/(ρ1 + ρ2) is the

reduced gravity and s = (ρ2 − ρ1)/(ρ2 + ρ1) is the stratification parameter.
Although the dissipative effects are totally neglected in our analysis we will also

use the following non-dimensional parameter:

d =

√
νΩ

H�Ω
(3.4)

for the sake of comparison with the experimental results, where for kinematic viscosity
we choose the value ν = 1.18.10−6 m2 s−1 which corresponds to the experiments of
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Williams et al. (2005). We will also use a parameter F = 1/Bu used as the Froude
number in Williams et al. (2005) for the same reason.

The depth profiles Hj (r) and respective velocities Vj (r) in (3.2) correspond to steady
cyclogeostrophically balanced state in each layer:

2 Vj +
V 2

j

r
+ r = ∂rΠj . (3.5)

In spite of the introduction of the parameter d , which serves uniquely for scaling
purposes, our analysis is purely inviscid. In the experiment, however, the mean
axisymmetric flow is controlled by friction. Indeed, there is a positive torque due to
the shear across the upper Ekman layer, and there are negative torques due to the
shears across the lower Ekman layer and the Stewartson layers at the outer and inner
vertical sidewalls (Stewartson 1957) acting on the quasi-inviscid interiors of both the
upper and lower layers. Because the Stewartson layers are very thin, it seems plausible
to neglect them and to study solutions where each layer rotates as a solid body. The
rotation rates of the layers lie in the interval between the rotation rate of the base (0
in the rotating frame) and that of the upper lid (Ro in the rotating frame). Therefore,
in general,

V2 = α2 r, V1 = α1 r, (3.6)

and we get the following expressions for the heights in the state of cyclogeostrophic
equilibrium for such mean flow:

Hj = Hj (0) + (−1)j
[
2α2 + α2

2 − 2α1 − α2
1 + s(2α2 + α2

2 + 2α1 + α2
1 + 2)

] r2

2Bu
. (3.7)

Hart (1972) considered the top, bottom and interfacial friction layers and found
that the rotations rates are α1 = (2 + χ)Ro/2(1 + χ) and α2 = Ro/2(1 + χ) where
χ =(ν2/ν1)

1/2 is the viscosity ratio between the two layers. If the two layers have close
viscosities χ = 1, it leads to (α1, α2) = (0.75 Ro, 0.25 Ro).

A calculation based on a layerwise balance of the torques in Williams, Read &
Haine (2004) gives values for (α1, α2) about the same order but depending on the
turntable angular velocity. The direct measurements of the radial velocity profiles by
Flor (2008) are closer to (α1, α2) ≈ (0.9 Ro, 0.1 Ro). We will therefore keep these last
values throughout the paper, but this particular choice does not mean a generality
loss, as changing the relative rotation rate just means rescaling of the Rossby number.

Supposing a harmonic form of the solution in the azimuthal direction,

(uj (r, θ), vj (r, θ), πj (r, θ)) = (ũj (r), ṽj (r), π̃j (r)) exp[ik(θ − ct)] + c.c., (3.8)

where k is the azimuthal wavenumber (k ∈ �), and omitting tildes we get from (3.2):

k(Vj − rc)iuj − (r + 2Vj )vj + r∂rπj = 0,

−(r + Vj + r∂r (Vj )iuj + k(Vj − rc)vj + kπj = 0,

−∂r (rHj iu) + kHjv + k(Vj − rc)(−1)j η = 0,

π2 − π1 + s(π2 + π1) = Bu η.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

The system (3.9) is an eigenvalue problem of order 6 which can be solved by
applying the spectral collocation method similarly to the one-layer flow. In comparison
to the latter case, the dispersion diagrams we obtain show that the branches of
dispersion relation corresponding to different modes can intersect, thus creating
instabilities of various nature. Namely, we will display below the instabilities resulting
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Figure 6. Growth rate of most unstable modes in (Ro,Bu) space. Darker zones correspond
to higher growth rates. Contours displayed are 0.001, 0.01, 0.02 and further interval at 0.02.
The thick upper frontier line marks the outcropping limit when the interface between the two
layers intersects the bottom or the top. The results for the outcropping configuration will be
not discussed in this paper.

from the interaction between Rossby waves in upper and lower layer (the baroclinic
instability), the interaction between Rossby and Kelvin or Poincaré waves in respective
layers (RK instability) and the interaction between two Poincaré, or Kelvin and
Poincaré, or two Kelvin modes (KH instability). Although each instability occupies
its proper domain in the parameter space, we will see that there exist crossover regions
where two different instabilities coexist and may compete.

3.2. Instabilities and growth rates

We first present the overall stability diagram in the space of parameters of the model,
and then illustrate different parts of this diagram by displaying the corresponding
unstable modes and dispersion curves. The stability diagram was obtained by
calculating the eigenmodes and the eigenvalues of the problem (3.6), (3.9) for about
50 000 points in the space of parameters (there are typically 200–300 points along each
axis in the figures below) and then interpolating. As before, only discrete azimuthal
wavenumbers correspond to realizable modes. We nevertheless present the results as
if the spectrum of wavenumbers were continuous, for better visualization.

The results are synthesized in figures 6–9 displaying, respectively, the growth rates
and the wavenumbers of most unstable modes. The results are plotted both in the
plane of parameters Ro − Bu (figures 6 and 7) and in the plane F and d , for
convenience of comparison with laboratory experiments by Williams et al. (2005)
(figures 8 and 9).

The parameter space is clearly divided in three different regions. The upper-
left parts in all figures correspond to the outcropping (incropping) region where
the interface between the layers intersects with the top (bottom) plane. The onset
of out(in)cropping corresponds to the thick upper border line in the figures. The
out(in)cropping situations were out of the scope of the experiments of Williams
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Figure 7. Wavenumber of most unstable modes in (Ro,Bu) space corresponding to figure 6.
Darker zones correspond to higher wavenumbers. The interval between subsequent contours
is 1.
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Figure 8. Growth rate of most unstable modes in (F, d) space. Lines of constant Ro are
plotted using numerical values of Williams et al. (2005) for g′ and H0. Darker zones correspond
to higher growth rates. Contours displayed are 0.001, 0.01, 0.02 and further at interval 0.02.
The thick upper frontier line marks the outcropping limit when the interface between the two
layers intersects the bottom or the top.

et al. (2005) and will be not considered in what follows. Such configurations have
been studied experimentally in the classical paper by Griffiths & Linden (1982) and
constitute a separate subject under current analytical and numerical investigation,
which will be presented elsewhere.
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Figure 9. Wavenumber of most unstable modes in (F, d) space corresponding to figure 8.
Darker zones correspond to higher wavenumbers. The interval between subsequent contours
is 1.

The lower-right parts of all figures correspond to stable flows. An example of the
dispersion diagram of such flow denoted by (d ) in figure 8 is given in figure 10.

We also show in this figure how the dispersion diagrams evolve while changing
parameters and approaching the instability band spreading from low-left to upper-
right in figures 6–9. One clearly sees how the initially stable flow without imaginary
eigenvalues of c, which is similar to the one-layer case with the same physical
meaning of different branches (cf. figure 3), develops instabilities of various nature
as parameters change. Thus, as shown in the left column of figure 10, decreasing
the Burger number leads to distortion of the dispersion curves of Rossby modes
and their reconnection leading to Rossby–Rossby (RR) resonance, i.e. the baroclinic
instability. Different distortion of dispersion curves of Rossby modes takes place if
Ro increases at constant Bu, leading to reconnection (a) with Kelvin-mode curve and
RK resonance with corresponding instability, and (b) with Poincaré-mode curve and
Rossby–Poincaré (RP) resonance and corresponding instability. Further increasing Ro

leads to reconnection of Kelvin-mode curves and Kelvin–Kelvin (KK) resonance, and
related KH instability. Note that although KK, KP and PP resonances are physically
different, they are frequently confused in the literature and appear under the general
name of KH instability. Similarly RK and RP instabilities are often called both RK
(cf. Sakai 1989). We will also follow this shorthand description in what follows, which
hopefully would not lead to confusion.

In the context of wave resonance, there are three essential parameters in the
problem: V = �Ωr0, the velocity (or velocity shear) of the basic flow, CR = Ω�H/H0r0,
the phase velocity of the Rossby waves and CG =

√
g′H0, the phase velocity of the

gravity waves. The interpretation of the results may be done on the basis of the
alternative set of non-dimensional parameters which are defined as follows:

F ∗ = V/CG = �Ωr0/
√

g′H0, a new Froude number and R∗ = V/CR = g′H/2Ω2r2
0 ,

a new Rossby number. With these definitions one finds the baroclinic instability at
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Figure 10. Dispersion diagram c − k (a) for the stable configuration corresponding to point
(d ) in figure 6 and its evolution with the change of parameters: Ro = 0.1, Bu decreasing from
top to bottom ((a–d ): (a) Bu =90, (b) Bu =10, (c) Bu =0.5 and (d ) Bu =0.25); Bu =90, Ro
increasing from top to bottom ((a, e–g): (a) Ro = 0.1, (e) Ro = 5, (f ) Ro = 8 and (g) Ro =10).
Thick grey lines correspond to unstable regions (non-zero Im(c)).
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Figure 11. Dispersion diagram (a) and growth rate (b) of the modes for Ro = 0.1 and
Bu =0.25 (see (a) in figure 8). Grey line in (a) corresponds to the RR resonance and the
respective unstable modes.

small R∗ and KH instabilities at large F ∗, which matches the traditional view of these
instabilities. However, to keep a closer link with experimental results of Williams et al.
(2005) the discussion below is based on Bu, Ro, F and d .

Thus, as for the ageostrophic Phillips model in a straight channel, cf. Gula et al.
(2009), several types of instabilities are present, namely, (a) the baroclinic instability
for small values of Bu and Ro (RR resonance), (b) the RK instability (RK or RP
resonance) for intermediate values of Bu and Ro and (c) the KH instability (KK or KP
resonance), for high values of Bu and Ro. As usual, the KH instability is characterized
by highest growth rates and shortest wavelengths, the baroclinic instability is long
wave and low growth rate and RK instability is intermediate, although spanning a
wide range of wavenumbers. Note that the main difference with the plane-parallel
flow of Gula et al. (2009) is the discrete selection of wavenumbers due to the annular
geometry and the loss of the symmetry due to different heights and velocities at the
inner and the outer wall.

In the figures 11–13 we give the dispersion diagrams (both real and imaginary
parts of the phase speed as a function of the azimuthal wavenumber) corresponding
to different values of (Ro, Bu) referring to typical cases (a), (b), (c), respectively, in
figures 6–9. We present also the structure of unstable modes in both layers and the
corresponding maps of the interface deviation, because this is often the measured
quantity in experiments.

Figure 11 shows a dispersion diagram in the zone of baroclinic instability. Two
Rossby waves, one propagating in each layer, are in resonance having the same
Doppler shifted phase speed and give rise to a baroclinic instability (see Hoskins,
McIntyre & Robertson 1985). The structure of the unstable mode is shown in figure 14.
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Figure 12. Dispersion diagram (a) and growth rate (b) of the modes for Ro = 1.5 and Bu = 4
(see (b) in figure 8). Thick grey lines in (a) correspond to the RK and RP resonances and the
respective unstable modes.
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(see (c) in figure 8). Thick grey lines in (a) correspond to the RK, KK, RP and KP resonances
and the respective unstable modes.
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(a)

(b)

(c)

Figure 14. The structure, pressure and velocity fields of the upper (left) and lower layer
(right), of (a) the baroclinically unstable mode at k =2 (see figure 11), (b) the RK mode at
k = 4 (see figure 12) and (c) the KH instability at k = 5 (see figure 13). The full lines correspond
to positive and the dotted lines to negative values. (a) Both fields are typical of a Rossby
mode. (b) The field in the upper layer is typical of a Rossby mode, while the field in the lower
layer is typical of a Kelvin mode. (c) Both fields are typical of a Kelvin mode.
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(a)

(b)

(c)

Figure 15. Interface height for (a) baroclinic instability at k = 2 (see figure 11), (b) RK
instability at k = 4 (see figure 12) and (c) KH instability at k = 5 (see figure 13). The full lines
correspond to positive and the dotted lines to negative values. Contours are plotted at the
interval (a) 0.0137, (b) 0.015 and (c) 0.017.

Figure 12 shows a dispersion diagram in a pure RK instability area. A Rossby
wave propagating in the upper layer resonates with a Kelvin wave propagating in the
lower layer and give rise to a RK instability (see Sakai 1989; Gula et al. 2009). The
structure of the unstable mode is shown in figure 14.
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Figure 16. Growth rate of most unstable modes in (Ro,Bu) space. Zoom of the box in
figure 6. Contours displayed are 0.001, 0.01, 0.02 and further interval at 0.02.

Figure 13 shows a dispersion diagram in a KH instability area. A Kelvin wave
propagating in the upper layer resonates with another Kelvin wave propagating in
the lower layer and gives rise to a KH instability. For these values of parameters we
can see that RP and RK instabilities are also present but with lower growth rates.
The structure of the unstable mode is shown in figure 14.

Thus RK and KH instabilities coexist for large Bu and Ro (small F and d) having
comparable growth rates, although different characteristic wavenumbers. As follows
from the last figure, and from the comparison of figures 8 and 9, or 6 and 7, in general,
close values of the growth rates may correspond to essentially different wavelengths
of the most unstable modes. This means that different instabilities may coexist and
compete. A clear-cut crossover region is indicated by a box in figures 8 and 9, and
corresponds to coexisting baroclinic and RK instabilities. A zoom of the box is shown
in figure 16.

Figure 17 shows the dispersion diagram corresponding to the (e) point in the
crossover region of figure 16. We see that in this area both baroclinic and RK
instability are present, having close growth rates. This means that the two instabilities
are competing and that relatively high wavenumbers may be excited due to the RK
instability in this range of parameters. The interface deviations corresponding to
competing RR and RK instabilities are presented in figure 18.

4. Summary and discussion
Thus, after having analytically resolved the problem of small perturbations around

cyclogeostrophycally balanced one-layer shallow-water Couette flow in the rotating
annulus, which allowed us (a) to identify the normal modes of the problem and (b) to
benchmark the numerical collocation scheme, we established a full stability diagram
of the two-layer vertically sheared flow in the rotating annulus and identified the
main instability modes. We established the origin of various instabilities resulting
from phase-locking and resonance between the normal modes of the upper and the
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Figure 17. Dispersion diagram (a) and growth rate (b) of the modes for Ro = 0.18 and
Bu = 0.28 (see (e) in figure 16). Thick grey lines in (a) correspond to the RR and RK
resonances and the respective unstable modes.

(a) (b)

Figure 18. Interface height for baroclinic instability at k = 4 (a) and for RK instability at
k =15 (b). Both instabilities have the same growth rate for this set of (Ro, Bu) as can be seen
on figure 17. The full lines correspond to positive and the dotted lines to negative values.

lower layer and showed different scenarios of stability loss in the space of parameters
of the system. Perhaps the most interesting result is that in certain regions of the
parameter space two different instabilities can exist and compete. The standard
baroclinic instability, thus, may be ‘contaminated’ by the RK one. Remarkably, the
corresponding crossover zone is situated in the domain of the parameter space where
emergence of short-wave perturbations was observed in the experiments together
with the developing baroclinic instability (cf. Williams et al. 2005). Although the
RK instability has typical wavenumbers not sufficiently different from the baroclinic
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one (cf. figure 17) and, thus, cannot directly explain the experimental observations of
small-scale waves on top of the developing baroclinic instability, the interaction of two
different unstable modes is worth studying in this context. Note that as shown in Gula
et al. (2009), the nonlinear saturation of the RK instability is totally different from
that of baroclinic instability, with an important role being played by the mean flow
reorganisation. Thus, although on general grounds one could expect manifestations
of the standard behaviour of the pair of nonlinear modes, like e.g. synchronization,
it is difficult to make predictions without detailed studies of the nonlinear regime.
The finite amplitude disturbances and the effects of nonlinearity as the nonlinear
interactions between the various waves will be investigated in future work, both
theoretically and by using a high-resolution finite-volume numerical scheme and a
mesoscale atmospheric model (WRF).

Coming back to the main motivation of our study, the comparison between our
results and laboratory experiments shows good agreement in some parameter regions,
and discrepancies in some other. Let us look at the figure 8 and at the corresponding
figure in Williams et al. (2005). While there is a very good agreement in the baroclinic
instability region, the region of the KH instability in figure 8 is relatively narrow
compared to Williams et al. (2005). As to the RK instability region, it is not clearly
identifiable in the experiment.

An obvious explanation of the first discrepancy is that, in spite of the same physical
mechanism, the KH instabilities in shallow-water and in full primitive equations are
not quantitatively the same, especially in the large wavenumber domain. Another
factor is surface tension. According to Hart (1972) and James (1977), the interfacial
surface tension between the two layers is negligible for the long-wave instabilities,
while it is stabilizing for short- wave ones. Indeed, the effect of interfacial surface
tension is inversely proportional to the wavelength square. The short-wave RK
and KH instabilities are then likely to be stabilized, while the long-wave baroclinic
instability is unaffected.

Another possible explanation of non-manifestation of the RK instability is its rapid
nonlinear saturation due to reorganisation of the mean flow and energy dissipation
through small scale secondary KH instabilities (cf. Gula et al. 2009), which makes it
more difficult to identify in a laboratory experiment such as Williams et al. (2005),
especially in view of the small dimensions of the apparatus.

As was already stressed in the Introduction, the two-layer rotating shallow-water
model should be considered as a conceptual one, allowing to grasp the universal
features of destabilization of large-scale shear flows in GFD. In principle, a linear
stability analysis of a full (three-dimensional, non-hydrostatic, viscous and surface
tension included) experimental flow is possible along the same lines. However, such
task requires incommensurate (with respect to its ‘coarse-grained’ shallow-water
counterpart) computational efforts, and the results will depend on the fine structure
of the mean flow (e.g. the parameters of the mixing layer between the layers) which
may vary from one experiment to another.

The authors are grateful to anonymous reviewers for useful comments. This work
was supported by ANR project FLOWINg (BLAN06-3 137005) and Alliance project
15102ZJ.
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